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This paper will concentrate on contributions of CWI to the development of par-

allel Runge-Kutta (RK) methods. We shall describe two approaches to construct

such methods. In both approaches, a conventional implicit RK method is used

as a corrector equation whose solution is approximated by an iterative method.

In the �rst approach, the iteration method uses a �xed number of iterations

without solving the corrector. Assuming that a one-step predictor is used, this

approach again results in an RK method, however, an RK method possessing a

lot of intrinsic parallelism. In the second approach, the corrector is solved by

modi�ed Newton iteration and the linear systems arising in each Newton itera-

tion are solved by a parallel iteration process which is tuned to the special form

of these linear systems. Furthermore, we apply the parallel iteration process in

a step-parallel fashion which further enhances the amount of parallelism. Fi-

nally, the application of parallel RK methods within the framework of waveform

relaxation is briey discussed.

1. Introduction

We will be concerned with the solution of the initial-value problem (IVP)

dy

dt
= f(y); y(t0) = y0; y; f 2 Rd (1.1)

by Runge-Kutta (RK) methods on parallel computers. Our starting point is
the RK method

yn = yn�1 + h(bT 
 I)F(Yn);

R(Yn) := Yn � h(A
 I)F(Yn)� e
 yn�1 = 0:
(1.2)
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Here, A is the s-by-s Butcher matrix, b is an s-dimensional vector containing
the step point weights, e is the s-dimensional vector with unit entries, I is
the d-by-d identity matrix, h is the stepsize tn � tn�1, and 
 denotes the
Kronecker product. The s components Yni of the sd-dimensional solution
vector Yn (the stage vector) represent s numerical approximations to the s

exact solution vectors y(tn�1 + cih) where c = (ci) := Ae denotes the abscissa
vector. Furthermore, for any vector V = (Vi);F(V) contains the derivative
values (f(Vi)). It is assumed that the components of c are distinct and arranged
in increasing order. In the following, we shall use the notation I for any identity
matrix. However, its order will always be clear from the context.

This paper will concentrate on contributions of CWI to the development of
parallel RKmethods. We shall describe two approaches to construct such meth-
ods. In both approaches, (1.2) is used as a corrector equation whose solution
is approximated by an iterative method. In the �rst approach, the iteration
method uses a �xed number of iterations and (1.2) is not necessarily solved.
Assuming that a one-step predictor is used, this approach again results in an
RK method, however, an RK method possessing a lot of intrinsic parallelism.
In the second approach, (1.2) is solved by modi�ed Newton iteration and the
linear systems arising in each Newton iteration are solved by a parallel iteration
process which is tuned to the special form of these linear systems. Sections 2
and 3 describe the construction and analysis of the parallel RK methods and
the parallel iterated RK methods. In Section 4, the parallel iteration process
is applied in a step-parallel fashion which further enhances the amount of par-
allelism. Finally, the application of parallel RK methods within the framework
of waveform relaxation is briey discussed in Section 5.

2. Parallel RK methods

Consider the method

Y(0)
n = e
 yn�1 + h(B 
 I)F(Y(0)

n ) + h(C 
 I)F(e
 yn�1); (2.1)

Y(j)
n = e
 yn�1 + h(B 
 I)F(Y(j)

n ) + (2.2)

+ h((A �B)
 I)F(Y(j�1)
n ); j = 1; : : : ;m;

yn = yn�1 + h(bT 
 I)F(Y
(m)
n ); (2.3a)

where B and C are appropriately chosen matrices and m is a �xed integer.
This method can be interpreted as an iterative method with a �xed number

of iterations. Evidently, if m! 1 and if Y
(j)
n converges, then Y

(j)
n converges

to the solution Yn of (1.2). However, for m �xed, we may also interpret
f(2.1),(2.2),(2.3a)g as an RK method with Butcher tableau as given in Figure
2.1a.
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Figure 2.1a. Figure 2.1b.

In the case of sti� problems it is recommendable to replace (2.3a) by the
formula (see Shampine [49])

yn = yn�1 + (bTA�1 
 I)(Y
(m)
n � e
 yn�1); (2.3b)

provided that A is nonsingular (we remark that for sti�y accurate RK meth-

ods, where bT = eTs A, formula (2.3b) reduces to yn = (eTs 
 I)Y
(m)
n ). The

step-point formulas (2.3a) and (2.3b) will be referred to as the conventional

and the Shampine step-point formula. The Butcher tableau for f(2.1),(2.2),
(2.3b)g is given in Figure 2.1b. Methods of the type (2.2) can also be based on
more general correctors than RK formulas (for a survey we refer to Burrage
[10, 11, 12] and to [51]).

The order of accuracy, the linear stability and the amount of intrinsic par-
allelism of the methods f(2.1),(2.2),(2.3)g are determined by the matrices A;B
and C. We have the following result for the (nonsti�) order of accuracy (see
e.g. Jackson and N�rsett [35], Jackson, Kv�rn� and N�rsett [34],
Burrage [8,9], van Dorsselaer [17], and the CWI papers [22, 27]).

Theorem 2.1. The orders of accuracy of the RK methods f(2.1),(2.2),(2.3a)g

and f(2.1),(2.2),(2.3b)g are respectively given by p := minfp�;m+ q + 1g and

p := minfp�;m + qg, where p� and q denote the orders of the corrector (1.2)

and of the predictor formula for Y
(0)
n . If (B +C)e = c, then q � 1 and if also

Bc = Ac, then q � 2. 2

Results for the sti� order of accuracy are given in [25]. From now on, the order
of a method is always meant to be the nonsti� order of accuracy.

The linear stability properties are obtained by applying f(2.1),(2.2),(2.3)g
to the basic stability test equation y0 = �y. For the step point formulas (2.3a)
and (2.3b), this leads to the respective stability functions

Rm(z) = R(z) + zbTZm(z)Q(z)e;

Rm(z) = R(z) + bTA�1Zm(z)Q(z)e;
(2.4)

where z := h� and where the matrices Z;Q and the function R are given by
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Z(z) := z(I � zB)�1(A�B);

Q(z) := (I � zB)�1(I + zC)� (I � zA)�1;

R(z) := 1 + zbT (I � zA)�1e:

(2.5)

Here, R(z) is the stability function of the corrector (1.2). In the following
sections, we discuss the cases where B vanishes and where B is diagonal.

2.1. Explicit RK methods

For nonsti� problems, we may set B = C = O to obtain an explicit s(m+ 1)-
stage RK method requiring sm + 1 right-hand side evaluations (in [22] we
called such methods Parallel Iterated RK methods, or briey PIRK methods,
in order to indicate that they are based on iterating an RK method). Since
in nonsti� situations it is natural to use the conventional step-point formula
(2.3a), Theorem 2.1 implies that the order of accuracy is given by

p := minfp�;m+ q + 1g = minfp�;m+ 1g:

Each block of s stages of this PIRK method can be computed in parallel,
so that for m � p� � 1, we e�ectively have an (m+ 1)-stage method of or-
der m + 1 (provided that s processors are available). Hence, for m � p� � 1,
f(2.1),(2.2),(2.3a)g generates an explicit RK method (ERK method) the order
of which equals its number of e�ective (or sequential) stages. Iserles and
N�rsett [33] showed that this is an optimal result, because the order p of ex-
plicit RK methods cannot exceed the number sseq of sequential stages (see also
N�rsett and Simonsen [47]). If we choose for the underlying corrector, the
s-stage Gauss-Legendre method, then p� = 2s, so that the number of proces-
sors is half the order. The stability polynomials of optimal ERK methods are
given by truncated Taylor expansions of exp(z), the stability regions of which
can be found in the literature (cf., e.g., [19]). Experiments on four-processor
Alliant computers were performed at the University of Trondheim [36, 40] and
at CWI [22]. These experiments showed that parallel RK methods of the above
type are quite e�cient.

Remark 2.1. Optimal ERK methods can also be generated by Richardson ex-
trapolation (see, e.g., [23] and [50]). In particular, extrapolation of the explicit
midpoint rule generates an optimal ERK of order p which only needs [1 + p=4]
processors (here, [.] denotes the integer part function). However, the experi-
ments in [23] indicate that they are more expensive than Gauss-Legendre-based
methods. 2

2.2. Diagonally implicit RK methods

Parallel diagonally implicit RK methods arise if B is a diagonal matrix D. Be-
cause of the `diagonal' implicitness, each block of s stages can be computed in
parallel, so that e�ectively, we only have m + 1 implicit stages. The stability
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__________________________________________________________________________________________

Order pst sseq K Stability Remarks
__________________________________________________________________________________________

p = 3 1 p-1 1 A DIRK, NØRSETT [44]

p = 3 2 p-1 1 > A DIRK, CROUZEIX [16]

p = 4 1 p-1 1 A DIRK, CROUZEIX [16], ALEXANDER [1]

p = 4 1 p-2 2 L PARK, ISERLES & NØRSETT [33]

p = 3, 4, 5 s p-1 s > A Parallel DIRK, C = O, D = diag(c), [27]

p = 6, 7 s p-1 s > A(α) Parallel DIRK, C = O, D = diag(c), [27]

p = 3, 5, 7 s p s > A Parallel DIRK, C = A-D, ρ(I-D-1A) = 0, [24]

p ≤ 6, p = 8 s p s L Parallel DIRK, C = O, D = δ I, [27], [45]

p ≤ 8, p = 10 s p+1 s L Parallel DIRK, C = O, D = δ I, [27], [45]
__________________________________________________________________________________________

Table 2.1. Characteristics of DIRK, PARK and Parallel DIRK methods.

regions can be computed from the stability functions (2.4). In [27] and [24],
this has been done for several choices of B = D and C. Table 2.1 speci�es
the main characteristics of a number of these parallel DIRK methods. For rea-
sons of comparison, we also list characteristics of conventional DIRK methods
and a parallel RK (PARK) method of Iserles and N�rsett [33]. In this
table, pst denotes the block-stage order, sseq the number of implicit sequen-
tial stages, and K the number of processors needed. Furthermore, A-stability,
A(�)-stability, L-stability, and strong A-stability and A(�)-stability are respec-
tively indicated by A;A(�); L;> A, and > A(�). All these methods need only
one LU -decomposition per processor. The methods referred to in the �fth and
sixth row of this table use either Gauss-Legendre or Radau IIA as the under-
lying corrector, both with step-point formula (2.3a). In the methods of the
last three rows, the corrector is Radau IIA with step-point formula (2.3b), and
in the methods of the last two rows, D is determined by the restricted Pad�e
approximants of N�rsett [45] (see also Wolfbrandt [54]). With respect to
its order, the PARK method of Iserles and N�rsett needs a surprisingly low
number of sequential stages and yet it is L-stable. The parallel DIRK methods
have the advantage of a relatively high stage order and step-point order.

3. Parallel iterated RK methods

The conventional approach of solving the corrector equation (1.2) is the modi-
�ed (or simpli�ed) Newton iteration scheme

(I �A
 hJn)(Y
(j)
n �Y(j�1)

n ) = �R(Y(j�1)
n ); j = 1; : : : ;m; (3.1)

where Jn is the Jacobian of the right-hand side function f at tn and Y
(0)
n is the

initial iterate to be provided by some predictor formula. The most powerful
RK methods with respect to order of accuracy and stability (such as those
based on Gaussian quadrature) possess a full Butcher matrix A, so that each
iteration with (3.1) requires the solution of an sd-dimensional linear system for
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the Newton correction Y
(j)
n �Y

(j�1)
n . If direct solution methods are used, then

the costs for solving the linear systems usually are extremely high, particularly
for large values of sd, because of the expensive LU -decompositions. As pointed
out by Butcher in 1976, LU -costs can be reduced by using a transformation

Y
(j)
n = (Q
I)U

(j)
n to obtain transformed linear systems with a matrix of coef-

�cients of the form I�Q�1AQ
hJn (assuming that Q is nonsingular). Hence,
by choosing Q such that Q�1AQ has a (block) diagonal or (block) triangular
structure, the transformed systems can be split into subsystems of dimension
less than sd (see [13, 14]). Unfortunately, RK methods of Gauss-Legendre and
Radau type possess a Butcher matrix with at most one real eigenvalue, so that
the best we can achieve is either complex-valued subsystems of dimension d or
real-valued subsystems of dimension 2d (cf. Hairer andWanner [19, p.130]).
To circumvent this overhead in the linear algebra part, N�rsett [46] intro-
duced RK methods with an A-matrix possessing a real, one-point spectrum.
Using the Butcher transformation [13], these methods can be implemented in
such a way that only real-valued systems of dimension d have to be solved. This
work was then extended by Burrage [7], who also derived reference formulas
for error control. These so-called SIRK methods are particularly suitable for
implementation on sequential computer systems, since they require only one
LU -decomposition of dimension d per Jacobian or stepsize update. On par-
allel computer systems, we may drop the `one-point spectrum' requirement,
because the LU -decompositions needed in the transformed subsystems can be
computed in parallel. Hence, the Butcher transformation is a means to intro-
duce parallelism into RK schemes. For example, if A has a real spectrum such
as the multi-implicit RK methods of N�rsett [46] and Orel [48]. E�ectively,
these methods require only one LU -decomposition of dimension d per Jacobian
or stepsize update.

At CWI we did not change the RK method, but we changed the iteration
process for solving the corrector equation (1.2). We designed parallel iteration
processes with the property that only real-valued, linear systems of dimension
d are to be solved.

3.1. PDIRK and PTIRK methods

In the preceding section, we used (2.2) with a �xed number of iterations and
B was chosen to achieve high accuracy and good stability. Let us now use
(2.2) as a (nonlinear) iterative solver for approximating the solution of the
corrector (1.2) and let B be chosen to achieve fast convergence to the corrector

solution. We remark that in an actual application, the solution Y
(j)
n of (2.2)

is often approximated by just one modi�ed Newton iteration. In that case, the
iteration method (2.2) reduces to a process of the form (3.1) with A replaced
by B.

3.1.1. PDIRK methods. As in Section 2.2, we may choose B diagonally. This
results into the Parallel Diagonal-implicit Iterated RK (PDIRK) methods anal-
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ysed in [24]. They possess the same parallel features as the parallel DIRK
methods. It turned out that in the case of sti� IVPs, it is crucial for a fast
convergence that �(Z(1)) = �(I � D�1A) is small (here, Z(z) is de�ned as
in (2.5)). In [24], the matrix B = D was determined by minimizing the value
of �(I � D�1A) by a computer search. The resulting matrices D indicated
that it is highly likely that there exist matrices D such that �(Z(1)) actually
vanishes. This led us to pose the problem:

Problem 3.1. For what class of Butcher matrices A do there exist diagonal
matrices D with positive diagonal entries such that D�1A has a one-point
spectrum at 1? 2

If such a matrix D exists, then the diagonal entries of D are determined by the
(nonlinear) system that is obtained by requiring that the equation

det(D�1A� �I) = 0

has only zeros equal to 1. In this way, Lioen [41] showed the following result:

Theorem 3.1. For s-stage Radau IIA correctors with s = 2; : : : ; 8, there do

exist diagonal matrices D with positive diagonal entries such that D�1A has a

one-point spectrum at 1. 2

The matrices D derived by Lioen all generate A-convergent PDIRK methods
(here, a method is called A-convergent if its region of convergence contains the
whole left halfplane, see Section 3.2.1.). However, the convergence in the initial
phase of the PDIRK iteration process may be rather slow.

3.1.2. PTIRK methods. One of the research issues of the ODE group at
CWI has been the improvement of the rate of convergence of PDIRK methods,
particularly with respect to the initial phase of the iteration process. One op-
tion is to choose the matrix B = T where T is lower triangular with positive
diagonal entries. Such methods were called PTIRK methods [30]. The LU -
decomposition of I �T 
hJn again splits into s parallel LU -decompositions of
dimension d. If T is nondefective, then we may perform a Butcher transforma-

tion Y
(j)
n = (Q
 I) ~Y

(j)
n , with nonsingular Q, such that Q�1TQ is diagonal. In

this way, we can obtain `diagonal' implicitness as in the PDIRK methods. As
for the PDIRK methods, it is again crucial that �(Z(1)) = �(I � T�1A) is as
small as possible. The following result was proved in [20, 30]:

Theorem 3.2. Let A be de�ned by any collocation method with positive abscis-

sae and let A = TU be the Crout decomposition of A with T lower triangular

and U unit upper triangular. Then, �(I � T�1A) vanishes and T has positive

diagonal entries. 2

For a large number of RK methods, we computed the convergence regions of
the generated PTIRK method which were all found A-convergent. Moreover,
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the rate of convergence in the initial phase is considerably improved (see the
experiments reported in [30]).

3.2. PILSRK methods

The iteration processes described in the preceding section are nonlinear solvers
for RK systems. Quite recently, we started an alternative approach. Our
point of departure is the modi�ed Newton method (3.1). In order to avoid
linear systems of dimension 2d, we solved the linear Newton systems in (3.1)
iteratively by an inner iteration process which only requires the solution of
d-dimensional systems. This leads to the inner-outer iteration method

Y
(0;r)
n = initial approximation to Yn

For j = 1 to m

Y
(j;0)
n = Y

(j�1;r)
n

For � = 1 to r

(I �B 
 hJn)(Y
(j;�)
n �Y

(j;��1)
n ) =

�(I �A
 hJn)(Y
(j;��1)
n �Y

(j�1;r)
n )�R(Y

(j�1;r)
n );

either y
(j;�)
n = y

(m;r)

n�1 + h(bT 
 I)F(Y
(j;�)
n )

or y
(j;�)
n = y

(m;r)
n�1 + (bTA�1 
 I)(Y

(j;�)
n � e
 y

(m;r)
n�1 );

(3.2)

where B is a free matrix with real entries and positive eigenvalues. The inner

loop of (3.2) represents the inner iteration process with inner iteratesY
(j;�)
n and

y
(j;�)
n ; � = 1; : : : ; r. We shall refer to this process as a Parallel Iterative Linear

System method for RK systems (PILSRK method). The process de�ning the

outer iterates Y
(j;r)
n and y

(j;r)
n ; j = 1; : : : ;m, will be called the outer iteration

process. Obviously, if the inner iterates converge as r !1, then they converge

to the solution Y
(j)
n of (3.1). Before discussing the choice of suitable matrices

B, we consider convergence and stability aspects of the iteration process (3.2).

3.2.1. The region of convergence. In order to derive convergence conditions,

let U
(j)
n be the solution of the equation

(I �A
 hJn)(U
(j)
n �Y

(j�1;r)
n ) = �R(Y

(j�1;r)
n ); (3.1')

and de�ne the inner iteration error �j;� , the modi�ed Newton error �j , and the
total iteration error "j;� , i.e.,

�j;� := Y(j;�)
n �U(j)

n ; �j := Y(j)
n �Yn; "j;� := Y(j;�)

n �Yn (3.3)

with "j;0 := "j�1;r. Furthermore, we need
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G(�) := F(Yn +�)�F(Yn)� (I 
 Jn)�;

M := (I �B 
 hJn)
�1((A�B)
 hJn);

N1 := (I �B 
 hJn)
�1(A
 I); N2 := (I �A
 hJn)

�1(A
 I):

(3.4)

From (3.1) and (3.2) we derive the error recursions

�j;� =M�j;��1; �j = hN2G(�j�1); "j;� =M"j;��1 + hN1G("j�1;r); (3.5)

where j = 1; : : : ;m and � = 1; : : : ; r. From the relation for �j;� we see that
the inner iteration process converges if the spectral radius �(M) of M is less
than 1. Since the spectrum �(M) of M is given by that of the matrix Z(z)
de�ned in (2.5) with z 2 �(hJn), we are led to de�ne the region of convergence

of the inner iteration process by � := fz : �(Z(z)) < 1g. We shall call Z(z) the
ampli�cation matrix at the point z and �(Z(z)) the (asymptotic) ampli�cation

factor at z. Its maximum in the nonpositive halfplane Re(z) � 0 will be denoted
by �. If � < 1, i.e. � contains the whole nonpositive halfplane, then the inner
iteration process will be called A-convergent.

Theorem 3.3. The PILSRK method converges as r !1 if �(hJn) 2 �. 2

A simple manipulation reveals that

"j;r =Mr"j�1;r + h(I �Mr)N2G("j�1;r); j = 1; : : : ;m: (3.6)

Hence, if �(hJn) 2 � and if "1;0 = �0, then it follows from (3.5) and (3.6) that
"j;1 and �j satisfy the same error recursion. Thus, if the modi�ed Newton
method (3.1) converges and if �(hJn) 2 �, then the iteration process (3.2)
converges as m; r !1.

3.2.2. The order of accuracy of the iterates. To obtain further insight into the
convergence behaviour, we consider the order of accuracy of the method (3.2)
after a �nite number of inner and outer iterations. Let "j;r = O(hp(j)). Then
it follows from (3.4) and (3.6) that p(j) satis�es the recursion

p(0) = q + 1; p(j) = p(j � 1) +minfr; 2g; j = 1; : : : ;m; (3.7)

where q is the order of the predictor. Since Y
(m;r)
n = Yn + "m;r, we derive

from (3.7) the result:

Theorem 3.4. Let p0 = minfr; 2g and let p� and q denote the orders of

the corrector (1.2) and of the predictor formula for Y
(0;r)
n . Irrespective the

structure of B, the order of accuracy of the method (3.2) is given by p :=
minfp�; q + 1 +mp0g when using the conventional step-point formula and by

p := minfp�; q +mp0g when using the Shampine step-point formula. 2

This theorem shows that with respect to order of accuracy, it is recommend-
able to perform at least two inner iterations, so that for the step-point formulas
(2.3a) and (2.3b) the order of the corrector is reached within [(p� � q)=2] and
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[(p� � q + 1)=2] outer iterations (we recall that the order of accuracy is un-
derstood to be the nonsti� order; for sti� order considerations of Newton-like
processes we refer to the work of Van Dorsselaer and Spijker [17, 52]).
For example, for Radau IIA correctors with extrapolation predictor of order
q = s � 1 (see (3.11) below) and step-point formula (2.3b), we �nd that for
at least two inner iterations (i.e., r � 2), the order of accuracy is given by
p := minf2s� 1; s� 1 + 2mg. Thus, the order of the corrector is attained for
[(s+ 1)=2] or more outer iterations.

3.2.3. The PILSRK ampli�cation factors. Next we address the speed of con-
vergence of the PILSRK method. Since M is not expected to be a normal
matrix, the asymptotic ampli�cation factor � de�ned above only gives infor-
mation on the speed of convergence after many inner iterations and does not
give insight into the convergence behaviour in the initial phase of the iteration
process. However, by using a generalization of a theorem of Von Neumann due
to Nevanlinna [43] (see also [19, p.356]), we can prove the theorem:

Theorem 3.5. Let jj:jj2 denote the Euclidean matrix norm, and let �2[:] be the
corresponding logarithmic norm. If �2[Jn] � 0, then jjMrjj2 � max

Re(z)�0
jjZr(z)jj2:

2

This theorem suggests characterizing the convergence behaviour of PILSRK
methods by the (averaged) ampli�cation factors

�(r) = max
Re(z)�0

�(r)(z); �(r)(z) := r

p
jjZr(z)jj2: (3.8)

3.2.4. Stability. Finally, we discuss the stability of the method after a �nite
number of inner and outer iterations. Stability also plays an important role,
because stability for small values of r and m implies that we can produce
stable results at low computational costs. This is particularly important in
step-parallel applications of the scheme (3.2) (cf. Section 4). Therefore, it is
of interest to know the minimal number of iterations in order to ensure that
(3.2) is su�ciently stable. For the test equation y0 = �y, we have Yn =

(I � zA)�1ey
(m;r)

n�1 , so that we deduce from (3.3) and (3.6)

Y
(m;r)
n = Yn + Zmr(Y

(0;r)
n �Yn)

= (I � Zmr)(I � zA)�1ey
(m;r)

n�1 + ZmrY
(0;r)
n :

(3.9)

The stability behaviour is highly dependent on the predictor formula for Y
(0;r)
n

used. We shall consider last step-point value (LSV) predictors that are only

based on y
(m;r)
n�1 and extrapolation (EPL) predictors based on y

(m;r)
n�1 andY

(m;r)
n�1 .

They can both be cast into the form

Y(0;r)
n = p
 y

(m;r)
n�1 + (P 
 I)Y

(m;r)
n�1 ; (3.10)
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__________________________________________________________________________________________

B s = 4 r* s = 8 r*

__________________________________________________________________________________________
PDIRK [3.6, 2.5, 1.6, ... , 0.52] 5   [20, 12, 7.7, ...   ,  0.90] >40

PTIRK [0.6, 0.5, 0.5, ... , 0.50] 1  [1.0, 0.9, 0.9, ... ,  0.86] 2

(3.14), Ã
ij
 = O, γ ≈ 1 [2.2, 1.0, 0.8, ... , 0.44] 3 [14, 2.6, 1.6, ...  ,  0.64] 7

__________________________________________________________________________________________

Table 3.1. PILSRK ampli�cation factors [�(1); �(2); �(3); : : : ; �(1)] for Radau
IIA correctors.

where the s-by-s matrix P and the s-dimensional vector p are determined by
order conditions. For LSV predictors we have p = e; P = O and order q = 0.
If cs = 1, then we have for EPL predictors

p := 0; P :=WV �1;

V := ((c � e)i�1); W := (ci�1); i = 1; : : : ; s; q = s� 1;
(3.11)

where powers of vectors are de�ned componentwise. On substitution of (3.10)
into (3.9), we �nd for the test equation the relation

Y
(m;r)
n = (I � zA)�1ey

(m;r)
n�1 � Zmr(I � zA)�1ey

(m;r)
n�1

+Zmrpy
(m;r)

n�1 + ZmrPY
(m;r)

n�1 :

Together with the step-point formulas (2.3), we obtain a linear recursion for

the pair (y
(m;r)
n ;Y

(m;r)
n ). The stability is determined by the magnitude of the

characteristic roots of this recursion. In the particular case of sti�y accurate
RK methods (as in Radau IIA correctors) where cs = 1 and bT = eTs A, we

have y
(m;r)
n = (eTs 
 I)Y

(m;r)
n , so that

Y
(m;r)
n = Smr(z)Y

(m;r)
n�1 ;

Smr(z) := (I � Zmr)(I � zA)�1eeTs + Zmr(peTs + P );
(3.12)

the characteristic roots of which are given by the spectrum �(Smr(z)) of the
stability matrix Smr(z). In applications, it is advantageous to have an L-
stable method. Since A-stability automatically implies L-stability if �(Smr(1))
vanishes, we are led to consider Smr(1) = Zmr(1)(peTs + P ). Since B is
nonsingular (because B is assumed to have positive eigenvalues), Smr(1) =
(I�B�1A)mr(peTs +P ). By observing that (I�B�1A)mr vanishes for mr � s

if �(I �B�1A) vanishes, we have the result:

Theorem 3.6. Let cs = 1; mr � s; �(I�B�1A) = 0, let the predictor formula

be de�ned by f(3.10),(3.11)g and let the Shampine step-point formula be used.

Then, the method (3.2) is L-stable whenever it is A-stable. 2

Using (3.12), we can compute the maximal spectral radius in the left halfplane
Re(z) � 0 of the stability matrix Smr(z). This maximum value will be denoted
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by �(Smr). We have A-stability or L-stability if �(Smr) = 1. The following
subsections are devoted to the region of convergence, the ampli�cation factors
�(�), and to stability for a few special choices of the matrices B. The starting
point for choosing B is that the linear systems in (3.2) are more e�ciently
solved than the linear system (3.1) when implemented on a parallel computer
system.

3.2.5. PDIRK matrices. Suppose that we choose B = D, where D is a diagonal
matrix with nonnegative diagonal entries. The linear system in (3.2) is only
`diagonally implicit' and splits into s subsystems, each of dimension d, which
can be solved in parallel. In particular, if a direct linear solver is used, then
the s LU -decompositions can be computed in parallel, so that e�ectively only
one decomposition is required. Similarly, in each iteration, the s components
of the right-hand side and the s forward-backward substitutions can also be
computed in parallel.

Evidently, we may use the PDIRK matrices D employed in the PDIRK
methods discussed in Section 3.1. However, since the PDIRK methods exhibit
a poor initial convergence, we may expect that the inner ampli�cation factors
�(r) associated with the generated linear solver are relatively large for small r,
particularly for larger values of s. In the �rst row of Table 3.1, these factors
are listed for the four-stage and eight-stage Radau IIA correctors (note that
�(1) equals �). In addition, we listed the value r� of r for which the PILSRK
ampli�cation factor becomes less than 1. The relatively large values of r�

indicate that the number of iterations needed to achieve su�cient stability is
expected to be high when using PDIRK matrices. The value of mr for which
�(Smr) becomes and remains less than or equal to a given number  will be
denoted by (mr) . For a few values of , Table 3.2 lists (mr) for the LSV
and EPL predictor and for a number of Radau IIA correctors (in order to
demonstrate how fast the (mr) -values increase with s, we have included all
correctors with s � 8). These values show that for s = 4 the (mr) -values are
acceptable, but for s = 8, PDIRK becomes stable only after a dramatically
large number of iterations.

3.2.6. PTIRK matrices. Next we use the PTIRK matrices T used in the
PTIRK methods of Section 3.1.2. For the four-stage and eight-stage Radau
IIA correctors, the range of inner ampli�cation factors is given in Table 3.1.
These �gures clearly show the superior convergence behaviour obtained by the
PTIRK matrices for small r. Moreover, for �nite mr-values the stability is also
much better as can be concluded from the (mr) -values listed in Table 3.2.

3.2.7. Matrices with positive eigenvalues. Our most recent attempt to improve
the convergence chooses for B a matrix with the only requirement that its
eigenvalues are positive. By performing a Butcher transformation, it is possible
to transform the PILSRK method into
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_________________________________________________________________________________________
        B Predictor γ s = 2 s = 3 s = 4 s = 5 s = 6 s = 7 s = 8

________________________________________________________________________________________
   PDIRK LSV 1.1 1 4 6 10 17 28 58

1.01 1 4 6 10 18 29 58
1 1 5 8 10 18 29 59

   EPL 1 1 5 7 14 27 >40 >61

   PTIRK LSV 1.1 1 1 1 1 1 1 1
1.01 1 1 1 7 8 9 11
1 1 5 8 11 14 17 20

   EPL 1 1 3 4 10 14 26 >43

   (3.14), Ãij   = O LSV 1.1 2 4

1.01 2 6
1 8 19

EPL 1 5 14
________________________________________________________________________________________

Table 3.2. Values of (mr) .

(I � ~T 
 hJn)( ~Y
(j;�)
n � ~Y

(j;��1)
n ) =

�(I � ~A
 hJn)( ~Y
(j;��1)
n � ~Y

(j�1;r)
n )

�(Q�1 
 I)R((Q
 I) ~Y
(j�1;r)
n );

(3.13)

where ~A = Q�1AQ and where ~T = Q�1BQ is triangular or even diagonal if B
is nondefective. A �rst result is [31]:

Theorem 3.7. Let A have eigenvalues �k � i�k with �k > 0 and de�ne �k :=p
�2k + �2k, K = fk : �k 6= 0g and B = Q ~TQ�1, where Q is such that the

diagonal blocks of ( ~A) = Q�1AQ = ( ~Ajk) are given by

~Akk :=

0
BB@

�k
(2�k � 2�k + �k)

1 + 2

�
1 + 2


�k 2�k � �k

1
CCA if k 2 K; (3.14a)

~Akk := �k if k =2 K;

and where

~T :=

0
BBBBBB@

~T11 O O O � � �

~A21
~T22 O O � � �

~A31
~A32

~T33 O � � �

� � � � �

1
CCCCCCA

;
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~Tkk :=

0
@

�k 0

�
1+2


�k

�k


1
A if k 2 K; ~Tkk := �k if k =2 K: (3.14b)

Then:

(a) The PILSRK method is A-convergent for all  > 0.
(b) In the left halfplane Re(z) � 0, the asymptotic ampli�cation factor vanishes

at in�nity and is bounded by

� = maxfj1� 2(2 + 1)�1�k�
�1
k j : k 2 Kg. 2

The value of the asymptotic ampli�cation factor � is minimized for  = 1.
However, if  = 1, then ~Tkk is defective for k 2 K, so that B cannot be
diagonalized. At the cost of a slight increase of �, the defectness of ~Tkk can be
removed by choosing  close to but di�erent from 1. The resulting values of �
are smaller than for the PILSRK method generated by the PDIRK and PTIRK
matrices (see Table 3.1 and recall that � = �(1)). In [31] we analysed the case
where the lower triangular blocks ~Aij in ~T vanish. Using a numerical search,
transformation matrices Q with minimal condition number (with respect to the
Euclidean norm) were determined for  � 1. The averaged inner ampli�cation
factors and the (mr) -values corresponding with these matrices Q are listed
in the Tables 3.1 and 3.2. Table 3.1 shows that the initial and asymptotic
ampli�cation factors are respectively larger and smaller than those associated
with PTIRK matrices, while Table 3.2 implies that for s = 8 block-diagonal
matrices of the form (3.14) are much more stable than the PTIRK matrices.

4. Step-parallel iteration

In methods employing step-parallel iteration, the iteration procedure is concur-
rently applied at a number of step-points, that is, the iteration process at the
point tn is already started without waiting until the iterates Y(j) at tn�1 have
converged. Step-parallel methods and its various versions (also called frontal
methods) have been discussed and analysed in a number of papers, among
which Miranker and Liniger [42], Bellen [3], Bellen et al. [4, 6], Bur-
rage [12], Gear and Xu Xuhai [18], Chartier [15], and Augustyn and
�Uberhuber [2]. Further references can be found in Burrage [12].

In the following, we survey step-parallel methods developed at CWI. These
methods can be seen as step-parallel versions of the scheme (3.2). The `step-
parallelization' of (3.2) consists of a modi�cation of the predictor formula and
of the residual function R. In order to specify this modi�ed scheme, we write
R(Yn;yn�1) instead of R(Yn). Then the step-parallel version of (3.2) is de-
�ned by
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For n = 1 to N

Y
(0;r)
n = p
 y

(1;r)
n�1 + (P 
 I)Y

(1;r)
n�1

For j = 1 to m

Y
(j;0)
n = Y

(j�1;r)
n

For � = 1 to r

(I � B 
 hJn)(Y
(j;�)
n �Y

(j;��1)
n ) =

�(I �A
 hJn)(Y
(j;��1)
n �Y

(j�1;r)
n )

�R(Y
(j�1;r)
n ;y

(j;r)

n�1 );

either y
(j;�)
n = y

(j;r)
n�1 + h(bT 
 I)F(Y

(j;�)
n )

or y
(j;�)
n = y

(j;r)
n�1 + (bTA�1 
 I)(Y

(j;�)
n � e
 y

(j;r)
n�1 );

(4.1)

where N denotes the number of integration steps. In the case of one inner
iteration (r = 1), this scheme has been analysed in [28, 29, 53]. The coupling

between the iterates Y
(j;r)
n and y

(j;r)
n in (4.1) allows us to start the iteration

process at the point tn already after just one outer iteration at tn�1, that is, as

soon as Y
(1;r)
n�1 is computed, we can compute Y

(2;r)
n�1 and Y

(1;r)
n concurrently. In

this way, the outer iterates Y
(j;r)
1 ;Y

(j�1;r)
2 ;Y

(j�2;r)
3 ; : : : can all be computed

concurrently. In fact, we may write:

For j = 1 to m

For i = 1 to minfj;Ng

If i = j then Y
(0;r)

i = p
 y
(1;r)

i�1 + (P 
 I)Y
(1;r)

i�1

Y
(j�i+1;0)
i = Y

(j�i;r)
i

For � = 1 to r

(I �B 
 hJn)(Y
(j�i+1;�)

i �Y
(j�i+1;��1)

i ) =

�(I �A
 hJi)(Y
(j�i+1;��1)
i �Y

(j�i;r)
i )

�R(Y
(j�i;r)
i ;y

(j�i+1;r)
i�1 );

(4.2)

where we assumed m � N and where we omitted the step-point formula.
Hence, e�ectively, only N +m� 1 outer iterates have to be computed, instead
of Nm outer iterates as required by (3.2). The sequential (or e�ective) number
of outer iterations per step becomes mseq = (m + N � 1)N�1 � mN�1 + 1.
However, the step-parallel approach requires that the predictor formula needed

to start the iteration at tn is based on a su�ciently \safe" iterate Y
(1;r)
n�1 . This

requirement implies that we should perform su�ciently many inner iterations
in the �rst outer iteration. The condition m � N imposed on (4.2) implies that
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we need N processors for a parallel implementation. In practice, the number
of steps may be much larger than the number of processors available. This can
be accounted for by dividing the integration interval in subintervals (windows)
and by applying the integration process successively on these subintervals.

For r = 1, a convergence analysis of (4.2) and related versions can be found
in [28, 29, 53]. Here, we shall consider the case r � 1. For simplicity, we only

consider step-point formulas of the form y
(j;r)
n = (eTs 
I)Y

(j;r)
n . An elementary

derivation reveals that for the usual test equation the iteration error

"
(j;n)
� := Y

(j;�)
n �Yn satis�es the relation

"(j;�)n =M"(j;��1)n + (I �B 
 hJn)
�1(eeTs 
 I)"

(j;r)
n�1 ; (4.3)

where M is de�ned in (3.4). This leads to

"
(j;r)
n � Lr"

(j;r)
n�1 =Mr"

(j�1;r)
n ;

Lr := (I �Mr)(I �A
 hJn)
�1(eeTs 
 I);

(4.4)

or equivalently,

"(j+1) =MN;r"
(j); "(j) :=

0
BBB@

"
(j;r)

1

"
(j;r)
2

� � �

"
(j;r)

N

1
CCCA ;

MN;r :=

0
BBBB@

Mr O O O � � �

LrM
r Mr O O � � �

L 2
r M

r LrM
r Mr O � � �

L 3
r M

r L 2
r M

r LrM
r Mr � � �

� � � � �

1
CCCCA

:

(4.5)

Evidently, we have convergence whenever the spectrum �(M) of M is within
the unit circle. In Section 3 we already saw that this is precisely the convergence
condition for the inner iteration process. However, since MN;r is defective for
N > 1, the inner ampli�cation factors may be large for small r. Proceeding as
in Section 3, we de�ne the inner ampli�cation factors (cf. (3.8))

�
(r)

N = max
Re(z)�0

�
(r)

N (z); �
(r)

N (z) := r

q
jjZN;r(z)jj2; (4.6)

where

ZN;r(z) :=

0
BBBB@

Zr O O O � � �

KrZ
r Zr O O � � �

K 2
r Zr KrZ

r Zr O � � �

K 3
r Zr K 2

r Z
r KrZ

r Zr � � �

� � � � �

1
CCCCA
; (4.7)

and
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_______________________________________________________________________________________________

B N s = 4 r* s = 8 r*

_______________________________________________________________________________________________
PDIRK 2 [3.7, 2.9, 1.8, ... , 0.52] 6 [21, 22,  18,  ... , 0.90] >40

3 [4.1, 3.4, 2.0, ... , 0.52] 6 [23, 47,  48, ... , 0.90] >40
4 [4.7, 4.0, 2.3, ... , 0.52] 6 [25, 107, 128, ... , 0.90] >40

PTIRK 2 [0.8, 0.7, 0.6, ... , 0.50] 1 [1.2, 1.0, 1.0, ... , 0.86] 3
3 [0.9, 0.8, 0.7, ... , 0.50] 1 [1.3, 1.1, 1.0, ... , 0.86] 4
4 [1.0, 0.8, 0.7, ... , 0.50] 2 [1.5, 1.2, 1.1, ... , 0.86] 5

(3.14), Ãij  = O γ ≈ 1 2 [3.6, 1.3, 0.9, ... , 0.44] 3 [136, 4.4, 2.2,  ... , 0.64] 9
3 [5.1, 1.4, 1.0, ... , 0.44] 3 [1352, 6.7, 2.8,  ... , 0.64] 9
4 [6.6, 1.5, 1.0, ... , 0.44] 4 [13432, 9.7, 3.5,  ... , 0.64] 10

_______________________________________________________________________________________________

Table 4.1. Inner ampli�cation factors [�
(1)

N ; �
(2)

N ; �
(3)

N ; : : : ; �
(1)

N ] for Radau
IIA correctors.

Kr := (I � Zr) (I � zA)�1eeTs :

The analogue of Table 3.1 where the inner ampli�cation factors for N = 1 are

listed, is given by Table 4.1 where N = 2; 3; 4 (note that �
(r)
1 = �(r)). This

table shows the same trends as Table 3.1, but much more pronounced.

5. Waveform relaxation

The derivation of waveform relaxation (WR) methods starts with representing
the IVP (1.1) in the form

dy

dt
= �(y;y); y(t0) = y0; y;� 2 Rd ; (5.1)

where �(u;v) is a splitting function satisfying �(y;y) = f(y). This splitting
function is chosen such that the Jacobian matrix J� = @�=@u has a simple
structure, so that, given an approximation y(k�1) to the solution y of (5.1), a
next approximation y(k) is more easily solved from the system

dy(k)

dt
= �(y(k); y(k�1)); y(k);y(k�1);� 2 Rd (5.2)

than y is solved from (5.1). Here, k = 1; 2; : : : ; q, and y(0) denotes an initial
approximation to the solution of (5.1). The iteration process (5.2) is called con-
tinuous WR iteration with WR iterates y(k). This approach was introduced by
Lelarasmee [38] and Lelarasmee, Ruehli and Sangiovanni-Vincentelli
[39] in 1982 and since then has intensively been analysed and applied to IVPs
(see e.g. [37]). WR iteration has a lot of potential parallelism. For example,
a popular choice for the splitting function � is such that the matrix J� is �-
by-� block-diagonal (block-Jacobi WR method). Then, each iteration of the
WR method (5.2) requires the integration of s uncoupled IVP systems which
can be done in parallel on s processors. For a detailed survey of the potential

49



for parallelism of WR methods, we refer to the recent book of Burrage [12].
Here, we present a brief description of a WR approach based on RK methods
and its relation with the step-parallel methods of the preceding section.

Let us integrate the IVP for (5.2) numerically by the RK method (1.2).
Then, we obtain the scheme

For k = 1 to q

For n = 1 to N

Y
(k)
n = e
 y

(k)
n�1 + h(A
 I)�(Y

(k)
n ;Y

(k�1)
n ):

(5.3)

Here, y
(k)
n ;Y

(k)
n , and � are the analogues of yn�1;Yn and F occurring in (1.2).

As soon as Y
(k)
n is computed, the step-point value y

(k)
n can be obtained by one

of the following two formulas (cf. (2.3))

y
(k)
n = y

(k)

n�1 + h(bT 
 I)F(Y
(k)
n );

y
(k)
n = y

(k)
n�1 + (bTA�1 
 I)(Y

(k)
n � e
 y

(k)
n�1):

(5.4)

The scheme f(5.3),(5.4)g is called the discrete WR iteration process with (dis-

crete) WR iterates Y
(k)
n and y

(k)
n . Its stability and convergence properties have

recently been investigated by Bellen, Jackiewicz and Zennaro [4, 5] and
by in 't Hout [21].

Observe that (5.3) has a substantial amount of parallelism, irrespective the
structure of the splitting function �. It has a similar type of step-parallelism

as (4.2), because for given k, all iterates Y
(k)
1 ;Y

(k�1)
2 ;Y

(k�2)
3 ; : : : can be com-

puted in parallel (see also [5]). Hence, e�ectively, (5.3) does not require the
computation of qN iterates, but only of N + q � 1 iterates.

Finally, we remark that the nonlinear system forY
(k)
n in (5.3) is of the same

type as the system (1.2), so that it can be solved by modi�ed Newton using the
iterative linear system solver as described in Section 3. First results are pub-
lished in [26]. Extensions to general implicit di�erential equations (including
DAEs) are subject of current research [32].
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